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Abstract. Recent experiments have shown that first-order spin transitions can occur in
polymeric FeII compounds. In such materials the metal ions are linked by ligand groups to
form polymeric chains. Existing theories of the spin transition in crystalline materials are
discussed, but we argue that the physical justification of these theories may be inappropriate for
polymeric compounds. We describe a possible mechanism in which local strain in the ligand
network can drive the transition. A model Hamiltonian is presented and solved, and the effects
of pressure and dopant concentration on the spin transition are investigated. We also point out
that the model describes many of the effects observed in experiments on crystalline materials.

1. Introduction

Various transition metal compounds exhibit so-called spin transitions, in which the metal
ions undergo transitions from low-spin (LS) to high-spin (HS) states upon a change in the
temperature or pressure, or upon irradiating the sample [1]. This phenomenon occurs
typically for 3dn metal ions withn = 4–8. FeII (3d6) in an octahedral coordination
environment is probably the most common example. The electronic transition occurs
between theS = 0 (LS) and S = 2 (HS) states, which are separated by a positive
energy difference1 = EHS − ELS. The HS level actually comprises fifteen electronic
states, but since the splitting of these states is small compared to1, it can be viewed
as being fifteen-fold degenerate. The order parameter for the transition is the fraction of
ions in HS states, which can be inferred from magnetic susceptibility measurements or
Mössbauer spectroscopy [1]. When the temperature is raised to the order of1/kB, where
kB is Boltzmann’s constant, the HS fraction rises steeply. Depending on the compound and
the experimental conditions, the change in HS fraction is either continuous or apparently
discontinuous. For the case of non-interacting and isolated ions the HS fraction is driven
solely by thermal excitation, and one would expect the curve to be continuous. This is
found to be the case experimentally in systems where ion–ion interactions are negligible—
for instance, in samples doped with large concentrations of metal ions which cannot undergo
a spin transition, such as ZnII [2, 3]. As the dopant concentration is increased, the transition
is shifted to lower temperature and becomes less sharp [2, 3]. A discontinuous jump in HS
fraction indicates a first-order transition. In this case, on decreasing the temperature the HS
fraction falls again but there may be a large temperature hysteresis as well as a residual HS
fraction. These effects can be magnified by increasing the pressure [4]. For a first-order
transition to occur there must be significant effective ion–ion interactions which disfavour
LS–HS mixtures, and it is the source of these interactions which will form the core of our
discussion.
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There is an extensive body of literature regarding the cause of the effective ion–ion
interaction. Although the ideas are varied, the theoretical implementations are similar; an
approximate form for the free energy is presented which contains terms linear and quadratic
in the HS fraction, as well as an ideal-mixing contribution. This functional form gives rise
to continuous and first-order transitions, and hysteresis, depending on the coefficients. The
earliest examples of this approach are those of Chestnut [5] and Slichter and Drickamer
[6]. The work of Slichter and Drickamer is based on solution theory, but the resulting
expression for the free energy contains the essential ingredients. The linear term in the HS
fraction arises from the single-ion energy, i.e. the crystal-field splitting. The coefficient of
the quadratic term arises from the effective ion–ion interaction. In references [3, 5, 7–9] the
respective authors attribute all or some of this interaction to lattice strains, caused either by
phonon–ion interactions giving rise to attractive HS–HS interactions [5, 7], or by different
elastic energies associated with crystals of LS or HS ions [3, 8]. The coupling of molecular
(Jahn–Teller) distortion and lattice strains has also been investigated [9]. In references [4,
10–12] the possibility of HS (or LS) domains is explored. Direct ion–ion and phonon-
assisted interactions lead to a spin cooperativity over domains of a characteristic size, thus
giving a sharp transition. The interpretation of experimental data using this domain model
can lead to estimates of the characteristic domain size of anywhere between three [10] and
a hundred [11] ions. Hysteresis is explained once the rôle of lattice defects as domain
nucleation sites is considered [10, 12]. An increase in pressure raises the density of defects
and so magnifies the hysteresis [4]. Lastly, some authors have simply mapped the problem
onto Ising-type models [8, 13], which leads to an appropriate form for the free energy. The
origin of the effective ion–ion interaction is not addressed, however, but merely mapped
onto the (anti-) ferromagnetic interaction of the Ising model.

In all of these approaches the LS–LS and HS–HS interactions are necessarily more
favourable than LS–HS interactions, although the explanations for this are varied and
approximate. The current status of the theory of spin transitions in crystalline FeII

compounds is therefore largely phenomenological, but perhaps the likely sources of the
effective ion–ion interactions have been identified.

Recently, first-order transitions have been observed in some polymeric FeII compounds
[14–16]. In these compounds, chains of FeII ions are bonded together by large ligand groups,
but there is not necessarily a well-defined crystal structure. In the experiments it proved
impossible to grow a large single crystal of the compound, and the crystal structure is not
known. EXAFS data in reference [15] show no major structural changes accompanying
the spin transition, but only a lengthening of the FeII –ligand bonds by 0.18̊A. This may
be due, in part, to the fact that HS ions have a larger radius than those in the LS state.
The spin transition in these materials shows appreciable hysteresis, and in some work [14]
the metastable limits lie about 10 K either side of typical room temperatures. There was
seen to be almost no residual HS fraction on cooling the sample, other than that due to
small traces of FeIII ions formed by atmospheric oxidation of the sample in the course
of the experiments. In a recent study, Cantinet al [16] note that the effect of doping
polymeric materials with ions such as CuII or MnII on the spin transition is similar to that
in crystalline materials, i.e., the transition shifts to lower temperature and becomes less
sharp.

It is not clear whether ideas developed about crystalline compounds are applicable to
polymeric materials without a well-defined crystal structure. Firstly, the treatment of proper
vibrations in perfect crystals, such as the Debye theory [8], or the study of lattice expansion
via the Gr̈unheisen approximation [3], cannot be carried over to such polymeric compounds.
Secondly, the formation of HS (or LS) domains in a system of polymeric chains with steric
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interactions seems unlikely, and this is supported by the absence of residual HS fractions
in experiments [14–16]. Some experimental data suggest that magnetic or dispersion
interactions, which can lead to spin cooperativity, are weak even in some crystalline
materials [10]. In reference [7] Bari and Sivardière studied an Ising-type Hamiltonian
with ferromagnetic interactions. They found that the spin transition, on increasing the
temperature, is always accompanied by a magnetic transition to an ordered state. We have
confirmed this for a variety of spin Hamiltonians with ferromagnetic and antiferromagnetic
interactions. A magnetic transition is not observed in experiments, however.

The task, therefore, is to find an alternative explanation for the first-order spin transition
in polymeric FeII compounds. In this paper we present a simple model Hamiltonian for such
materials. Although the model is one dimensional, thus mimicking the polymeric structure
of the compounds, the physical mechanism through which the effective ion–ion interactions
arise is three dimensional.

In section 2 we describe and justify the model, and then proceed to derive its exact
free energy. In section 3 we present some experimentally relevant results, and section 4
concludes the paper.

2. The model

The central idea of our approach to the spin transition in polymeric materials is the presence
of strain in the ligand network. Imagine a chain of FeII ions, with each ion bridged to its
neighbour by a large ligand group. This is the case in the experiments of reference [15].
In the bulk material each chain will interact with its nearest neighbours largely through
steric interactions. It is reasonable to assume that there is considerable resistance towards a
particular region of a given chain sliding freely against the neighbouring chains. The FeII

ions are therefore constrained to particular positions relative to the ligand network. As the
temperature is increased, ions undergo thermal excitations to HS states at random, assuming
that no domains of cooperative spins can develop. The HS ionic radius is greater than that
of a LS ion, and so the equilibrium separation between metal ions in a chain also increases.
In a mixture of LS and HS ions, the ion–ion distance in a particular chain is constrained by
the ligand network to be commensurate with its neighbouring chains. As a result, elastic
strain develops, mainly in the pairs of ligand bridges attached to each HS ion. The only
way that the resulting strain can be relieved is if the equilibrium ion–ion separation along
a chain is roughly equal for all chains. This is achieved if the majority of ions are either in
the LS state or in HS states. Consequently, mixtures of LS and HS ions are disfavoured. A
similar argument holds for the cooling of a sample where the majority of ions are initially
in HS states.

On the basis of this argument, we define our model system as follows. ConsiderN

particles of equal massm, free to move along a line of lengthL. We will wish to investigate
the effect of dopant concentration on the spin transition and so we will include it at the
outset. Each particle is labelled with either 0, 1 or d corresponding to whether it is a LS
ion, a HS ion or an inert dopant ion, respectively. A LS ion can undergo a transition to any
of ν HS states at random, and vice versa, whereν is the HS level degeneracy. We define
the system Hamiltonian as

H = N11+
N∑
k=1

(p2
k/2m+ uk,k−1) (1)

whereN1 is the number of ions in HS states andpk is the momentum of particlek. uk,k−1
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is the pair interaction potential which is a function of the particle positions,qk andqk−1:

uk,k−1 =
{
∞ |qk − qk−1| < σk,k−1

0 |qk − qk−1| > σk,k−1.
(2)

The interaction potential is therefore defined by a set of six numbers, namelyσ00, σ01,
σ11, σ0d, σ1d, and σdd. Actually, in demanding that the dopant be inert, we can set
σ0d = σ1d = σdd = 0. The model is therefore defined by only three parameters. On
the basis of the argument outlined above,σk,k−1 is greatest between a LS ion and a HS ion.
Since the HS radius is larger than that of the LS radius, the following inequalities must
therefore be satisfied:

σ01 > (σ11+ σ00)/2> σ00. (3)

The model so defined is a non-additive one-dimensional version of the Widom–Rowlinson
model [17], where non-additivity implies the first inequality in equation (3).

This model is clearly oversimplified, but we argue that it is physically relevant. The
dominant interactions of a given ion on a given polymer chain are with its nearest neighbours
on the samechain, and these can be accounted for, at least approximately, in a one-
dimensional model. In the physical picture described above, the unfavourable LS–HS
interactions arise from chain–chain interactions. These areeffectivelyaccounted for by the
non-additivity of our one-dimensional Hamiltonian. One could think of an explicit model
for the polymer chains which included intra- and inter-chain coupling, but it would probably
not admit an exact solution, nor would it be a simple model with only a few parameters.
The present model has the merits of an exact solution, which we shall show in the next
section, and identifying the physically relevant parameters.

2.1. The free energy at constant pressure

In this section we derive the Gibbs free energy at constant pressure from the Hamiltonian
defined in equations (1) and (2). Of theN particles,N0 are LS ions,N1 are HS ions,
andNd are inert dopant ions. The concentration of speciesα is given by cα = Nα/N

and
∑

α cα = 1. In the canonical ensemble,N0, N1, Nd, L, andT are constant, and the
configurational integral is given by

Z = νN1 exp(−βN11)
∑
P

∫ L

0
dq1 · · ·

∫ L

0
dqN exp

(
−β

N∑
k=1

uk,k−1

)
(4)

where ν is the HS level degeneracy,β = 1/kBT , and the sum is performed over all
distinguishable permutations of theN particles along the line. By defining new coordinates
rk = qk − qk−1− σk,k−1, equation (4) can be written as

Z = νN1 exp(−βN11)
∑
P

∫ ∞
0

dr1 · · ·
∫ ∞

0
drN 2

(
L−

N∑
k=1

(rk + σk,k−1)

)
(5)

where2(x) is the Heaviside function, the argument of which constrains the chain of particles
to the line of lengthL. Following the approach of Ibsenet al [18], by inserting the
complex integral representation for2(x) into equation (5) and integrating over the particle
coordinates, we obtain

Z = νN1 exp(−βN11)
1

2π i

∫ a+i∞

a−i∞

dz

zN+1
exp(zL)

∑
P

exp

(
−z

N∑
k=1

σk,k−1

)
. (6)
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To evaluate the sum in equation (6) we note that it is related to an average over all
N !/N0!N1!Nd! possible particle arrangements. Since we assume that all arrangements of
LS and HS ions are equally likely in the absence of domains, and that the system is doped
at random, we can write in the limit of largeN , with c0, c1, andcd constant,

∑
P

exp

(
−z

N∑
k=1

σk,k−1

)
= N !

N0!N1!Nd!
exp

(
−z

N∑
k=1

σk,k−1

)
= N !

N0!N1!Nd!
exp(−zNσ̄ ) (7)

where

σ̄ = c2
0σ00+ 2c0c1σ01+ c2

1σ11 (σ0d = σ1d = σdd = 0). (8)

The bars in equations (7) and (8) denote averages over all distinguishable permutations of
ion identities. Substituting equation (7) into equation (6) and performing the integral by
parts, we obtain the configurational integral in the canonical ensemble,

Z = νN1 exp(−βN11)

N0!N1!Nd!
(L−Nσ̄)N2(L−Nσ̄). (9)

The canonical partition function,Q, is given by

Q = Z

3N
(10)

where3 is the de Broglie thermal wavelength. To transform the canonical partition function
to the constant-pressure(N0, N1, Nd, P , T ) partition function,ζ , the integral required is

ζ =
∫ ∞

0
dL exp(−βPL)Q = N !

N0!N1!Nd!

νN1

(βP )N+13N
exp(−βN11− βPNσ̄ ). (11)

Finally, the Gibbs free energy per particle,G/N , is given in the thermodynamic limit by

βG

N
= − 1

N
ln ζ = c0 ln c0+ c1 ln c1+ cd ln cd+ c1(β1− ln ν)+ lnβP3+ βP σ̄ . (12)

The pressure,P , in equation (12) is strictly a force in one dimension, but we use pressure
here to highlight the link with experiments. This is the central result of our analysis, and it
contains all of the necessary terms to predict a spin transition. It is also the exact solution
of the Hamiltonian described and justified above. In the next section we present numerical
results for the spin transition.

3. Numerical results

In this section we investigate the effects of pressure and dopant concentration on the spin
transition. We study the model defined in section 2 with the parameters

σ00 = σ
σ01 = 3σ

σ11 = 2σ

σ0d = σ1d = σdd = 0

ν = 15

(13)

where σ defines the unit of length. Theσk,k−1-parameters satisfy equation (3) but are
otherwise arbitrary. The degeneracy of the HS level,ν, is set to that of theS = 2 level
of FeII .
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For a given pressure, temperature and dopant concentration, the equilibrium HS
concentration is that which minimizes the Gibbs free energy, i.e.

∂(βG/N)

∂c1

∣∣∣∣
c1=ceq

1

= 0. (14)

In experiments, thefraction of ions in HS states,x1, is reported, and this is given by

x1 = c1

c0+ c1
. (15)

In the case of non-interacting ions, minimization of equation (12) withσ = 0 leads directly
to

x1 = ν exp(−β1)
1+ ν exp(−β1) (16)

yielding the high-temperature HS fraction,x1 = ν/(ν + 1). Equation (16) is expected
to hold in heavily doped systems, whilst the high-temperature HS fraction will hold at
all dopant concentrations. In general, the free energy in equation (12) was minimized by
solving equation (14) using the Newton–Raphson method. For each pressure, temperature,
and dopant concentration, two minimizations were performed, with the initial value ofc1

set to 0.0001 and 0.99(1−cd). The two solutions of equation (14) will be different only for
those temperatures inside the metastable region which brackets the equilibrium transition
temperature. This reflects the fact that there is a free-energy barrier between the LS and
HS ‘phases’ in the metastable region, which manifests itself in temperature hysteresis. The
equilibrium transition temperature is determined by the equality of the Gibbs free energy
per particle in the two phases, one predominantly LS and the other predominantly HS.

0.0 0.2 0.4 0.6 0.8 1.0
kBT/∆

0.0
0.2
0.4
0.6
0.8

x 1

0.0
0.2
0.4
0.6
0.8
1.0

x 1

(a)

(b)

Figure 1. The high-spin fraction as a function of temperature for (a)Pσ/1 = 0.4 and
(b) Pσ/1 = 0.5: the heating curve (short-dashed line); the cooling curve (long-dashed line);
the equilibrium curve (solid line).cd = 0 in both cases.

We report results in dimensionless units reduced byσ and1. In figure 1,x1 is shown
as a function of temperature at two pressuresPσ/1 = 0.4 andPσ/1 = 0.5, with no
dopant. For each pressure the warming curve (low initialc1), cooling curve (high initial
c1), and equilibrium curve are shown. The main point is that the width of the hysteresis loop
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increases with increasing pressure, in qualitative agreement with experiments on crystalline
materials [4]. This reflects the fact that as the pressure is raised, the free-energy barrier
between LS and HS phases increases, i.e. mixtures of LS and HS ions are increasingly
disfavoured.

In figure 2, we show the equilibriumx1-curves against temperature for a series of
pressures in the rangePσ/1 = {0, 0.6}, with no dopant. As the pressure is increased
the transition shifts to higher temperature and becomes discontinuous. In the experiments
of König et al on crystalline materials [4], a slight increase in transition temperature with
pressure was recorded, in agreement with our results. Also observed in these experiments
was an increase in the residual HS fraction upon cooling the material, which does not occur
in our model. This is consistent with the formation of domains, but as we pointed out in
section 1, the formation of domains in polymeric materials seems unlikely. Indeed, no such
residual HS fraction was observed in references [14, 15], other than that due to small traces
of FeIII ions.

0.0 0.2 0.4 0.6 0.8 1.0
kBT/∆

0.0

0.2

0.4

0.6

0.8

1.0

x 1

Figure 2. The equilibrium high-spin fraction as a function of temperature at various pressures:
Pσ/1 = 0 (solid line); Pσ/1 = 0.2 (dotted line); Pσ/1 = 0.4 (short-dashed line);
Pσ/1 = 0.5 (long-dashed line);Pσ/1 = 0.6 (dot–dashed line).cd = 0 in all cases.

The pressure at which the transition becomes discontinuous,P ∗, can be determined from
equation (12). ForP > P ∗ there exists, at the transition temperature, a maximum in the
free energy corresponding to the top of the barrier between LS and HS phases. Therefore,
at P ∗,

∂(βG/N)

∂c1

∣∣∣∣
P ∗,T ∗,c∗1

= 0

∂2(βG/N)

∂c2
1

∣∣∣∣
P ∗,T ∗,c∗1

= 0

(17)

where T ∗ and c∗1 are the corresponding transition temperature and HS concentration
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respectively. From the free energy in equation (12), some algebra yields

kBT
∗

1
=
(

ln ν + 2(σ00− σ11)

2σ01− σ00− σ11

)−1

P ∗σ
1
= 2σ

2(σ00− σ11)+ (2σ01− σ00− σ11) ln ν

c∗1 =
1

2
.

(18)

From equation (18) it is clear that ifσ00 = σ11, then for there to be a discontinuous transition
at finite pressure,σ01 > (σ00 + σ11)/2 andν > 1. Hence, the sharp transition is driven
by the non-additivity of the ion interactions, and the degeneracy of the HS level. For the
parameters used in this study,P ∗σ/1 ' 0.3266 andT ∗ ' 0.4899.

In figure 3 we show the equilibriumx1-curves against temperature for a series of dopant
concentrations at a pressurePσ/1 = 0.5. As the dopant concentration is increased the
transition shifts to lower temperatures and becomes less sharp, in qualitative agreement
with experiments on polymeric FeII compounds [16] and crystals [2, 3]. In the most heavily
doped system,cd = 0.99, the curve is indistinguishable from equation (16). This is due to
the dilution of interacting pairs of ions by the dopant.

0.0 0.5 1.0
kBT/∆

0.0

0.5

1.0

x 1

Figure 3. The high-spin fraction as a function of temperature forPσ/1 = 0.5 and various
dopant concentrations:cd = 0.0 (solid line); cd = 0.25 (dotted line);cd = 0.50 (short-dashed
line); cd = 0.75 (long-dashed line);cd = 0.99 (dot–dashed line).

It should be noted that at the time of writing there is very little published literature
regarding spin transitions in polymeric FeII compounds [14–16]. Hence the effect of pressure
on the spin transition in polymeric FeII is not yet known from experiments. Our simple
model does predict the effect of doping seen in reference [16], i.e., the transition occurs at
a lower temperature and becomes less abrupt. Our theoretical predictions are in agreement
with experiments on crystalline FeII compounds, although the physical justification of our
model does not necessarily carry over to such materials.
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4. Discussion

In this paper we set out to describe the mechanism by which sharp spin transitions can
occur in polymeric FeII compounds. We have discussed the theories of the transition in
crystalline materials, but we have pointed out that the application of such ideas to the case
of polymeric materials might be inappropriate. We have described a possible mechanism
in which the transition is driven by a strain developed in the ligand network due to HS
ions having a larger radius than those in the LS state. The only way to relieve the strain
is by a cooperative transition to HS states. From these ideas, we conceived of a model
Hamiltonian which contains the effective ion–ion interactions required by our suggested
mechanism. The model was solved exactly, allowing us to investigate the spin transition.
The effects of pressure and dopant concentration on the spin transition, and the hysteresis
of the transition, were studied. On increasing the pressure, we find that the spin transition
shifts to higher temperature and becomes sharper. In addition, the associated hysteresis
grows with increasing pressure. Although, to date, there are no published experimental data
on the effect of pressure in polymeric materials, the trends that we found are similar to those
observed in experiments with crystalline materials. We anticipate that the effect of pressure
on the spin transition in polymeric materials will be captured by our model. Adding an
inert dopant at fixed pressure reduces the transition temperature and makes the transition
less sharp, in agreement with recent experiments.
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[7] Bari R A and Sivardìere J 1972Phys. Rev.B 5 4466
[8] Zimmermann R and K̈onig E 1977J. Phys. Chem. Solids38 779
[9] Kambara T 1981J. Chem. Phys.74 4557

[10] Gütlich P, Köppen H, Link R and Steinhäuser H G 1979J. Chem. Phys.70 3977
[11] Sorai M and Seki S 1974J. Phys. Chem. Solids35 555
[12] Müller E W, Spiering H and G̈utlich P 1983J. Chem. Phys.79 1439
[13] Bolvin H and Kahn O 1995Chem. Phys.192 295
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